Please wait...
Nepřihlášený uživatel
home
You are here: UCT PragueWeb PhD  → Prospective doctoral candidates → Study Programmes and PhD Topics → List of all available PhD topics → List of all available PhD topics
iduzel: 63431
idvazba: 75616
šablona: stranka
čas: 30.4.2024 09:54:12
verze: 5351
uzivatel:
remoteAPIs: https://studuj-api.cis.vscht.cz/cms/prace?weburl=/prospective-students/study-programmes-and-phd-topics/phd-topics
branch: trunk
Server: 147.33.89.153
Obnovit | RAW
iduzel: 63431
idvazba: 75616
---Nová url--- (newurl_...)
domena: 'phd.vscht.cz'
jazyk: 'en'
url: '/prospective-students/study-programmes-and-phd-topics/phd-topics/prace/druh/I/jazyk/en/locale/en/ustav/I016'
iduzel: 63431
path: 1/50375/50377/58015/59647/59703/61717/63431
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW

Department of Chemical Engineering

Polymer-based membranes for highly selective removal of CO2 from biogas

Granting Departments: KU Leuven, Belgium
Department of Chemical Engineering
Study Programme/Specialization: ( in Czech language , Double Degree )
Supervisor: prof. Ing. Petr Kočí, Ph.D.
prof. Ivo Vankelecom

Annotation


Membrane-based gas separation technology has contributed significantly to the development of energy-efficient systems for natural gas purification. Also CO2 removal from biogas, with CO2 contents exceeding 40% has more recently known rapid growth and development. Major challenge of polymer membranes for gas separation is related to their susceptibility to plasticization at high CO2 partial pressures. CO2 excessively swells the polymer and eases the permeation of CH4, thus reducing the selectivity. Membrane crosslinking is one of the best ways to prevent the plasticization. Mixed matrix membranes (MMMs), consisting of fillers homogeneously dispersed in a polymeric matrix aim at combining the processibility of polymers and the superior separation properties of the porous fillers. Metal-organic frameworks (MOFs) are such materials which have attracted considerable attention due to their tailorable functionality, well-defined pore size, pore tunability and breathing effects. MMMs for biogas upgrading will be prepared with increased permeabilities by choosing proper MOF/polymer combinations and modifying the thermal treatment, employing core-shell MOF materials with high bulk porosity and a selective shell layer.
Contact supervisor Study place: Department of Chemical Engineering, FCE, VŠCHT Praha

Solvent and pH stable membranes with ultra-sharp molecular weight cut-off values

Granting Departments: KU Leuven, Belgium
Department of Chemical Engineering
Study Programme/Specialization: ( in Czech language , Double Degree )
Supervisor: prof. Ing. Petr Kočí, Ph.D.
prof. Ivo Vankelecom

Annotation


Membrane-based separations currently offer the best strategy to decrease energy requirements and environmental footprint through newly developed solvent resistant nanofiltration (SRNF) or solvent-tolerant nanofiltration (STNF). So-called solvent activation of polymeric membranes involves treatment of an existing membrane by contacting it with solvents or solvent mixtures, which is hypothesized to restructure the membrane polymer through solvatation, increase polymer chain flexibility and organization into suitable structures. This will be verified by systematically treating membranes with different solvents and testing them for the separation of synthetic liquid streams. A high-throughput set-up will be used. Fundamental physico-chemical characterisations of the membranes before and after the treatments will provide insight in the changes at molecular level. The characterization techniques include gas and liquid uptake experiments (diffusivity), PALS (positron annihilation lifetime spectroscopy, to determine free volume element distributions), ERD (elastic recoil scattering, providing elemental analysis in membrane depth profiles), solid state NMR (nuclear magnetic resonance), TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry).
Contact supervisor Study place: Department of Chemical Engineering, FCE, VŠCHT Praha

Department of Inorganic Technology

Mixed matrix mambranes for gas separation

Granting Departments: KU Leuven, Belgium
Department of Inorganic Technology
Study Programme/Specialization: ( in Czech language , Double Degree )
Supervisor: doc. Dr. Ing. Vlastimil Fíla
prof. Ivo Vankelecom

Annotation


Gas membrane separation represents the perspective and energy-saving alternative with respect to the present separation processes (PSA, TSA, amine extraction, rectification, etc.). Most of the membranes industrially applied are based on polymeric materials having low permeability and/or selectivity. In the frame of this work the mixed matrix membranes combining the perspective properties of both, microporous and polymeric membranes, will be prepared and characterized. The microporous material e.g. ZIF-8, silicalite-1, ETS, FAU, TS-1, AFX, MOF, or their post-synthesis modified variants will be used as filler, and combined with polymeric matrix based on newly synthesized and/or industrially available polymers. The aim of this study is the preparation and characterization of membranes for different industrial applications. The target application will be defined upon agreement based on the actual research carried out in cooperating laboratories (e.g. processing of exhaust gases from power plants and other industrial processes, separation of CO2 from biogas, separation of H2 from streams containing CO2 and/or hydrocarbons, separation of hydrocarbons, etc.). In the frame of this work, the problematics of polymer-filler interactions and the development of new materials aiming to increase the thermal and chemical stability, selectivity, and permeability of prepared membranes will be studied.
Contact supervisor Study place: Department of Inorganic Technology, FCT, VŠCHT Praha

Department of Organic Technology

Mathematical models of composite materials prepared by dispersing solid particles of a filler in a liquid polymer matrix

Granting Departments: KU Leuven, Belgium
Department of Organic Technology
Study Programme/Specialization: ( in Czech language , Double Degree )
Supervisor: doc. Ing. Pavel Čapek, CSc.

Annotation


The work is aimed at the mathematical modelling of composite materials, the preparation of which includes the creation of a suspension of solid particles in a liquid mixture of a solvent and a polymer precursor, volume contraction of the suspension caused by evaporating the solvent and by forming a solid polymer matrix. The initial suspension is modelled using the random sequential addition of particles of various shapes. Then, the motion of particles of the filler in the shrinking suspension is simulated. Each model microstructure and the corresponding microstructure of the real composite material sample are characterised using statistical measures and these measures are subsequently compared with each other for the quality of the model to be evaluated. The real microstructures are deduced from digital images of their polished sections that are observed using a scanning electron microscope.
Contact supervisor Study place: Department of Organic Technology, FCT, VŠCHT Praha
Updated: 17.2.2022 09:45, Author: Jan Kříž

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre.