|
Molecular chemical physics and sensorics
Doktorský program,
Fakulta chemicko-inženýrská
The aim of the doctoral study programme Molecular Chemical Physics and Sensors is to prepare highly qualified specialists in the interdisciplinary fields of molecular chemical physics and sensorics. The main areas of study of this programme are related to knowledge of quantum physics and quantum chemistry, optics, electronics, vacuum physics, spectroscopy, modelling of molecules and molecular processes, and theoretical and experimental methods of studying nanostructures. As part of this study, PhD students will be prepared for independent research work in laboratories as well as for managerial positions at various levels, both in the public institutions and in the private sector. The aim of the doctoral study programme is to deepen and broaden students' knowledge so that they can combine experimental work with computational models and analyze large multivariate datasets with the aim of qualified evaluation of information and formulation of appropriate conclusions. UplatněníGraduates of the doctoral study programme Molecular Chemical Physics and Sensorics will have both deep theoretical knowledge and extensive experimental experience in chemical-physical disciplines (quantum theory, optics, optoelectronics, spectroscopy, computational chemistry and modelling of molecular and supramolecular systems, etc.). Graduates will be prepared for highly creative work in interdisciplinary teams dealing with molecular chemical physics, sensorics, spectroscopy, computational chemistry and nanostructure research, they will be able to communicate with experts in the field of measurement and control technology, physical and analytical chemistry, computer data evaluation or material research. Graduates will have extensive experience in communicating specialised knowledge in the form of written / electronic texts, especially in English, as well as oral and poster presentations. Detaily programu
Vypsané disertační práce pro rok 2026/27Ab initio modelování přenosu nosičů náboje v polymorfních organických polovodičích
AnotaceVelká strukturální a chemická variabilita organických polovodičů vyvolává potřebu výpočetního screeningu klíčových parametrů elektronové struktury a souvisejících vlastností objemové fáze, jako je šířka zakázaného pásu nebo mobilita nosiče náboje. Posledně jmenovaná vlastnost zůstává u většiny existujících organických polovodivých materiálů spíše nízká ve srovnání s tradičními anorganickými krystalickými platformami optoelektronických zařízení. Pochopení vztahů mezi krystalovou strukturou, nekovalentními interakcemi molekul v ní, elektronickými vlastnostmi, vodivostí a odezvou všech těchto vlastností na změny teploty a tlaku značně urychlí materiálový výzkum v oblasti organických polovodičů. Tato práce bude využívat zavedené metody elektronové struktury s periodickými okrajovými podmínkami a také ab initio fragmentační metody k mapování koheze organických polovodičů s pohyblivostí nosiče náboje v krystalických i amorfních strukturách těchto materiálů. Ab initio výpočty a Marcusova teorie budou použity jako výchozí bod pro detailní zkoumání vlivu lokálních strukturních variací v důsledku chemické substituce, tepelného pohybu nebo polymorfismu na vodivost cílových materiálů. Ab initio zpřesnění metod pro hledání kokrystalů farmaceuticky aktivních látek
AnotaceModerní formulace léčiv často spoléhají na kokrystalické formy, jejichž krystalová mřížka je vytvořena z více chemických látek, typicky určité aktivní farmaceutické složky a další biokompatibilní sloučeniny, která se v tomto kontextu nazývá koformer. Tyto kokrystalické lékové formy často mohou vykazovat vyšší rozpustnost, stabilitu nebo jiné prospěšné vlastnosti ve srovnání s krystaly čistých aktivních farmaceutických složek. Protože molekulární materiály mají tendenci krystalizovat v jednosložkových krystalech spíše než v kokrystalech, nalezení vhodného koformeru pro danou aktivní farmaceutickou složku může být velmi zdlouhavý a pracný proces. Aby se obešly nákladné experimenty typu pokus-omyl, in silico metody mohou pomoci předem vybrat seznam možných koformerů nabízejících vysokou pravděpodobnost vytvoření kokrystalu. V současnosti dostupné metody se zaměřují na screening elektrostatického potenciálu kolem hodnocených molekul a empirické párování jeho maxim a minim pro jednotlivé molekuly, což umožňuje screening koformerů se slušnou přesností pro molekuly s převážně vodíkovými vazbami. Tato práce se zaměří na začlenění ab initio výpočtů molekulárních interakcí, které přinesou další zlepšení také pro screening kokrystalů větších molekul s převažujícími disperzními složkami jejich interakcí. Nově budou zvažovány také dopady stechiometrických variací a prostorového balení molekul v mřížce kokrystalu, což značně rozšíří rozsah použitelnosti současných postupů screeningu kokrystalů. |
Nacházíte se: VŠCHT → Web PhD → Doktorské studium na VŠCHT Praha → Současní doktorandi → Nabídka předmětů doktorského studia → Detail programu
Aktualizováno: 25.8.2022 15:42, Autor: Jan Kříž

